Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Nature ; 600(7888): 295-301, 2021 12.
Article in English | MEDLINE | ID: covidwho-1626235

ABSTRACT

SARS-CoV-2 is a single-stranded RNA virus that causes COVID-19. Given its acute and often self-limiting course, it is likely that components of the innate immune system play a central part in controlling virus replication and determining clinical outcome. Natural killer (NK) cells are innate lymphocytes with notable activity against a broad range of viruses, including RNA viruses1,2. NK cell function may be altered during COVID-19 despite increased representation of NK cells with an activated and adaptive phenotype3,4. Here we show that a decline in viral load in COVID-19 correlates with NK cell status and that NK cells can control SARS-CoV-2 replication by recognizing infected target cells. In severe COVID-19, NK cells show defects in virus control, cytokine production and cell-mediated cytotoxicity despite high expression of cytotoxic effector molecules. Single-cell RNA sequencing of NK cells over the time course of the COVID-19 disease spectrum reveals a distinct gene expression signature. Transcriptional networks of interferon-driven NK cell activation are superimposed by a dominant transforming growth factor-ß (TGFß) response signature, with reduced expression of genes related to cell-cell adhesion, granule exocytosis and cell-mediated cytotoxicity. In severe COVID-19, serum levels of TGFß peak during the first two weeks of infection, and serum obtained from these patients severely inhibits NK cell function in a TGFß-dependent manner. Our data reveal that an untimely production of TGFß is a hallmark of severe COVID-19 and may inhibit NK cell function and early control of the virus.


Subject(s)
COVID-19/immunology , Killer Cells, Natural/immunology , SARS-CoV-2/immunology , Transforming Growth Factor beta/immunology , Atlases as Topic , Gene Expression Regulation/immunology , Humans , Immunity, Innate , Influenza, Human/immunology , Killer Cells, Natural/pathology , RNA-Seq , Single-Cell Analysis , Time Factors , Transforming Growth Factor beta/blood , Viral Load/immunology , Virus Replication/immunology
2.
Mucosal Immunol ; 14(6): 1381-1392, 2021 11.
Article in English | MEDLINE | ID: covidwho-1366810

ABSTRACT

The SARS-CoV-2 pandemic has so far claimed over three and a half million lives worldwide. Though the SARS-CoV-2 mediated disease COVID-19 has first been characterized by an infection of the upper airways and the lung, recent evidence suggests a complex disease including gastrointestinal symptoms. Even if a direct viral tropism of intestinal cells has recently been demonstrated, it remains unclear, whether gastrointestinal symptoms are caused by direct infection of the gastrointestinal tract by SARS-CoV-2 or whether they are a consequence of a systemic immune activation and subsequent modulation of the mucosal immune system. To better understand the cause of intestinal symptoms we analyzed biopsies of the small intestine from SARS-CoV-2 infected individuals. Applying qRT-PCR and immunohistochemistry, we detected SARS-CoV-2 RNA and nucleocapsid protein in duodenal mucosa. In addition, applying imaging mass cytometry and immunohistochemistry, we identified histomorphological changes of the epithelium, which were characterized by an accumulation of activated intraepithelial CD8+ T cells as well as epithelial apoptosis and subsequent regenerative proliferation in the small intestine of COVID-19 patients. In summary, our findings indicate that intraepithelial CD8+ T cells are activated upon infection of intestinal epithelial cells with SARS-CoV-2, providing one possible explanation for gastrointestinal symptoms associated with COVID-19.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Duodenum/immunology , Immunity, Mucosal , Intestinal Diseases/immunology , Intestinal Mucosa/immunology , Intraepithelial Lymphocytes/immunology , Lymphocyte Activation , SARS-CoV-2/immunology , Adult , Aged , Animals , Apoptosis , CD8-Positive T-Lymphocytes/virology , COVID-19/pathology , COVID-19/virology , Case-Control Studies , Cell Proliferation , Chlorocebus aethiops , Duodenum/pathology , Duodenum/virology , Female , Host-Pathogen Interactions , Humans , Intestinal Diseases/pathology , Intestinal Diseases/virology , Intestinal Mucosa/pathology , Intestinal Mucosa/virology , Intraepithelial Lymphocytes/virology , Male , Re-Epithelialization , SARS-CoV-2/pathogenicity , Vero Cells , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL